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Abstract: The cannabinoid system is represented by two principal receptor subtypes, termed CB1 and CB2, along with 
several endogenous ligands. In the central nervous system it is involved in several processes. CB1 receptors are mainly 
expressed by neurons and their activation is primarily implicated in psychotropic and motor effects of cannabinoids. CB2 
receptors are expressed by glial cells and are thought to participate in regulation of neuroimmune reactions. This review 
aims to highlight several reported properties of cannabinoids that could be used to inhibit the adverse neuroinflammatory 
processes contributing to Parkinson’s disease and possibly other neurodegenerative disorders. These include anti-oxidant 
properties of phytocannabinoids and synthetic cannabinoids as well as hypothermic and antipyretic effects. However, 
cannabinoids may also trigger signaling cascades leading to impaired mitochondrial enzyme activity, reduced 
mitochondrial biogenesis, and increased oxidative stress, all of which could contribute to neurotoxicity. Therefore, further 
pharmacological studies are needed to allow rational design of new cannabinoid-based drugs lacking detrimental in vivo
effects. 
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INTRODUCTION 

 Parkinson’s disease (PD) is characterized by the 
degeneration of dopaminergic neurons, most significantly in 
the substantia nigra. This results in impaired signaling within 
the basal ganglia leading to the cardinal symptoms 
experienced by PD patients, which include tremor at rest, 
bradykinesia, rigidity and postural instability. The risk of 
developing PD increases with age. PD affects 0.5-1% of 
individuals aged 65-80 years and 3-5% of those over 85 
years of age [1]. The healthcare cost of PD is estimated at 23 
billion dollars per annum in the United States alone [2]. 
Currently, the availability of effective treatment for PD is 
limited and there is no cure; therefore research into potential 
therapeutics is warranted.  

1. PATHOGENESIS OF PD AND THE CANNABINOID 
SYSTEM 

 There are numerous biological pathways and several key 
molecules implicated in the etiology and pathogenesis of PD 
(for reviews see [3-5]). Environmental triggers such as 
exposure to pesticides were implicated initially; however, 
recent studies demonstrate significant contribution of genetic 
factors. In addition, familial forms of PD have been 
described caused by mutations in a number of genes 
including PINK-1 (phosphatase and tensin homolog-induced 
putative kinase-1), parkin and DJ-1, which can lead to a 
deficiency in mitochondrial complex I and/or aggregation of 
the protein �-synuclein [6, 7]. The initial causative factors of  

*Address correspondence to this author at the Department of Biology, 
University of British Columbia Okanagan, 3333 University Way, Kelowna, 
BC, V1V 1V7, Canada; Tel: +1 (250) 807 9557; Fax: +1 (250) 807 8005;  
E-mail: andis.klegeris@ubc.ca 

PD are linked to several pathogenetic mechanisms such as 
increased oxidative stress, mitochondrial dysfunction and 
chronic neuroinflammation. These factors likely act 
independently and in combination to induce the critical loss 
of dopaminergic neurons and development of the 
characteristic symptoms [8].  

 The cannabinoid system has long been known to play a 
role in the functioning of the central nervous system. It 
involves two principal receptors, CB1 and CB2, along with 
numerous endogenous ligands. For an excellent overview of 
the cannabinoid system the reader is directed to several 
recent reviews on this topic [9-12]. In general, activation of 
CB1 receptors on neurons is associated with inhibition of 
excitation and is primarily implicated in psychotropic and 
motor effects. Chronic activation of CB1 receptors is also 
linked with cell death [13-15] and reduced mitochondrial 
biogenesis [16]. CB2 receptors are widely expressed on 
immune cells, including microglia in the brain, and have 
been shown to inhibit inflammatory responses [10, 17-19]. 
For chemical structures and biochemical properties 
(including receptor affinities) of various endogenous, plant-
derived, and synthetic cannabinoids, please refer to the 
comprehensive review published in a previous issue of this 
journal by Campillo and Paez [20]. 

 There is evidence that the cannabinoid system is altered 
in PD and may play a causative, supportive, or consequential 
role in disease progression (reviewed by [21-23]). CB1 
receptor activation has been shown to be increased in the 
basal ganglia of post-mortem brain tissue obtained from PD 
patients compared to controls [24]. Studies in rodent models 
of PD indicate that CB1 receptors may initially decline, 
followed by an increase as Parkinson-like symptoms 
progress [21]. These findings suggest that overactivation of 
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CB1 receptors may be involved in PD pathology [21, 24]. 
Levels of endocannabinoids measured in cerebrospinal fluid 
of PD patients were also higher compared to healthy control 
subjects [25]. Interestingly, levels of CB2 receptors appear 
not to be upregulated in PD patients or animal models of PD 
[26].  

 Various phytocannabinoids isolated from cannabis plants 
as well as synthetic cannabinoids not only interact with the 
above two receptor subtypes, but are also reported to possess 
anti-oxidant activity [27, 28]. Thus, in addition to affecting 
motor function and inflammatory responses, exogenous 
cannabinoids may also reduce oxidative stress. As a result, 
administration of exogenous cannabinoids has been touted as 
a potential therapeutic target in neurodegenerative diseases 
[11, 12, 20, 29-33]. The purpose of this review is to highlight 
potential mechanisms and evidence for the therapeutic use of 
exogenous cannabinoids specific to PD. We will focus on the 
anti-inflammatory and anti-oxidant properties of 
cannabinoids in relevant models of PD. Due to the emerging 
role of the cannabinoid system in the regulation of 
mitochondrial content, we will also discuss the potential 
implications of cannabinoid treatment on the functions of 
brain mitochondria, which may be particularly relevant to the 
pathogenesis of PD.  

2. ROLE OF NEUROINFLAMMATION IN PD 

 The progressive nature of PD may be attributed to 
neuroinflammation [4, 34]. The initial cause of 
neuroinflammation in PD and other neurodegenerative 
diseases is not well understood [4, 35], but may be related to 
the accumulation of �-synuclein [36-38], oxidative stress 
[39], or mitochondrial dysfunction [8]. Glial cells play a key 
role in neuroinflammation; elevated levels of activated 
microglia have been found in the substantia nigra of PD 
patient brains compared to the brains of control subjects [4, 
35]. Upon activation, glial cells may release pro-
inflammatory mediators, such as interleukin (IL)-1�, tumor 
necrosis factor (TNF)-� as well as neurotoxins, which 
include superoxide anion (O2-�), glutamate [40-42], soluble 
Fas ligand (Fas L) [43], tissue plasminogen activator [44], 
cathepsin B [45, 46] and several proteases including 
metalloproteases [47] and chymotrypsin-like proteases [48]. 
Neuroinflammation in conjunction with oxidative stress and 
mitochondrial dysfunction may induce dopaminergic 
neuronal death observed in PD [4, 5, 8]. 

2.1. Cannabinoids as Therapeutic Anti-Inflammatory 
Agents in PD 

 Research on the anti-inflammatory properties of 
cannabinoids specific to PD is limited, but there is evidence 
that some cannabinoids, particularly CB2 receptor ligands, 
may reduce neuroinflammation [10, 17-19]. A series of 
studies using the intracerebral 6-hydroxydopamine (6-
OHDA) injection as a rat model of PD also supports the 
finding that CB2 receptor agonists can be neuroprotective. In 
this model, the toxin 6-OHDA is injected into the medial 
forebrain bundle of rats, causing massive deterioration of 
catecholaminergic neurons that is accompanied by 
inflammation [49]. These animals then exhibit motor 
symptoms that are reminiscent of PD. Following 6-OHDA 

injection, daily treatment of rats with �9-
tetrahydrocannabinol (�9-THC) or cannabidiol for 14 days 
reduced dopaminergic neuron loss [50]. Using similar in vivo
methods, Garcia-Arencibia et al. [19] demonstrated that the 
synthetic CB2 receptor agonist HU-303 exhibited 
neuroprotective effects. Recently, transgenic rodents that 
overexpress the CB2 receptor were tested in this model and 
shown to have reduced dopaminergic neuron death and 
improved motor function following experimentally-induced 
PD [51]. Collectively, these studies indicate that, in the 6-
OHDA model of PD, stimulation of CB2 receptors may 
reduce inflammation and protect against symptoms of PD. 

 Studies on isolated brain cells indicated that the positive 
effects of cannabinoids on neuronal survival after 6-OHDA 
treatment were mediated by microglia [50]. Various 
exogenous CB receptor agonists, including �9-THC and �8-
THC, were shown to suppress the release of pro-
inflammatory cytokines IL-1 and TNF-� by human THP-1 
monocytic cells [17]. In addition, the non-psychotropic 
Cannabis sativa derivative cannabidiol reduced IL-1 levels 
in inflamed hippocampal tissue homogenates of amyloid-
treated mice brains [18]. These studies indicate that 
cannabinoids may function to reduce inflammation by 
blunting the chronic microglial activation that is implicated 
in PD. This effect is likely mediated through the CB2 
receptors on microglial cells [10, 17]. As such, selective CB2 
receptor agonists are hypothesized to have a potential as anti-
neuroinflammatory agents in PD [10, 20, 23, 30-32]. 

3. CANNABINOIDS AND THERMOREGULATION: A 
NOVEL HYPOTHESIS FOR THE ANTI-INFLAM-
MATORY EFFECTS OF CANNABINOID TREAT-
MENT IN PD AND OTHER NEURODEGENERATIVE 
DISORDERS 

 For several centuries it has been known that cannabinoids 
reduce body temperature (reviewed in [52]). Studies 
performed during the last 50 years have demonstrated that 
marijuana (cannabis) as well as purified cannabinoids, such 
as �9-THC and synthetic agonists of cannabinoid receptors, 
cause reductions in body temperature in a number of 
different species of homeotherms [41, 53, 54]. Recently, it 
has been demonstrated that endocannabinoids participate in 
thermoregulation and that they can both up- and down-
regulate core body temperature [55, 56]. Even though the 
most likely mechanisms involve CB1 receptors found in the 
hypothalamic thermoregulatory centre, there is some 
evidence that the effects of cannabinoids on body 
temperature may also involve CB1-independent mechanisms 
[52].  

 Cannabinoids have been shown not only to induce 
hypothermia in normothermic animals, but also to have 
antipyretic activity in febrile animals [57]. Benamar et al.
[56] showed that a nonhypothermic dose of the cannabinoid 
receptor agonist WIN 55,212-2 antagonized bacterial 
lipopolysaccharide-induced fever in rats. This effect was 
blocked by a selective CB1 antagonist, and was independent 
of the CB2 receptors. These data confirm that cannabinoids, 
including �9-THC, could be used as antipyretic agents and 
suggest that endocannabinoids and CB1 receptor subtypes 
could be important in regulation of fever. In their study, 
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Benamar et al. [56] also demonstrated that the antipyretic 
effect of WIN 55,212-2 was accompanied by reduced levels 
of circulating IL-6, which is in line with several previous 
studies showing immunosuppressive effects of cannabinoids 
on circulating pro-inflammatory cytokines including IL-1�,
IL-6 and TNF-� [57-60]. The same cytokines are also known 
to be the endogenous pyrogens responsible for production of 
fever [61], and suppression of the circulating cytokines could 
be one of the mechanisms responsible for the antipyretic 
effect of cannabinoids. An alternative mechanism for the 
observed antipyretic effects of cannabinoids involves direct 
inhibition of biosynthesis of prostaglandin E2 [62], which is 
the final mediator of febrile response [61]�

 The hypothermic and antipyretic effects of cannabinoids 
could offer neuroprotection in neurodegenerative diseases, 
including PD, through several mechanisms. First, �9-THC 
and the synthetic CB1 agonist HU201 have been shown to be 
neuroprotective in animal models of middle cerebral artery 
occlusion; this effect was shown to be dependent on the 
hypothermia induced by their administration [63, 64]. 
Physical hypothermia has been shown to be neuroprotective 
in various experimental stroke models as well as in clinical 
setting [65, 66]. It is widely accepted that therapeutic 
hypothermia benefits the brain in numerous ways including 
decreased accumulation of excitotoxic neurotransmitters, 
suppression of reactive oxygen species (ROS) generation 
and reduction of mechanisms related to post-ischemic 
remodeling [67]. Therefore, multiple methods of inducing 
hypothermia� including surface cooling, intranasal selective 
hypothermia, extraluminal vascular cooling and epidural 
cerebral cooling� are currently being tested for efficacy and 
safety [68]. Therapeutic manipulation of body temperature 
by targeted use of cannabinoids may represent a novel means 
of slowing down the progression of chronic 
neurodegenerative diseases, which include PD and 
Alzheimer’s disease�

 Second, post mortem analysis show elevated levels of IL-
1� and TNF-� in the substantia nigra of PD patients; these 
pro-inflammatory cytokines have been implicated in the 
pathogenesis of PD (reviewed in [69]). The antipyretic 
effects of cannabinoids could be mediated by lowering both 
circulating and brain levels of these cytokines thus 
conferring neuroprotection indirectly by inhibiting 
neuroinflammatory processes. Sustained upregulation of pro-
inflammatory cytokines could also lead to chronically 
elevated temperature, which could be detrimental to neurons 
by enhancing neuroinflammatory processes [70]. Even 
though this has not been demonstrated in PD patients, a 
meta-analysis of data from six different studies showed a 
significant increase of core body temperature of Alzheimer’s 
disease patients [71]. This phenomenon could be a direct 
consequence of local inflammatory reactions in the brain. If 
similar chronic hyperthermia is present in PD, the 
hypothermic and antipyretic properties of cannabinoids 
could be used for therapeutic purposes [72].  

4. ROLE OF OXIDATIVE STRESS IN PD 

 Increased oxidative stress has long been associated with 
PD (reviewed in [73, 74]). Oxidative stress is a term used to 
describe an imbalance between the production and removal 

of ROS. The main source of cellular ROS is thought to be 
the mitochondria, where electrons can be transferred to 
molecular oxygen to produce O2-� within the mitochondrial 
electron transport chain (ETC). The main source of 
extracellular ROS under inflammatory conditions is likely 
NADPH oxidase, a multi-subunit enzyme present on the cell 
membrane of activated immune cells that produces O2-�.
Cannabinoids have been shown to possess anti-oxidant 
activity in vitro by virtue of their phenolic side group [28]. 
Based on this property, anti-oxidant cannabinoid treatment 
has been suggested for preventing PD and other 
neurodegenerative disorders [19, 21, 50].  

5. SOURCES OF OXIDATIVE STRESS IN PD 

5.1. Mitochondrial ROS Production in PD 

 Mitochondria-derived ROS have been implicated in PD 
pathology as various studies have reported impaired 
mitochondrial function and increased markers of oxidative 
cellular damage in brains of PD patients (reviewed in [74]). 
In particular, reduced activity of complex I of the 
mitochondrial ETC and the resultant O2-� formation have 
been hypothesized to play a causal and exacerbating role in 
PD [75]. Interestingly, �-synuclein appears to directly 
interact with complex I to impair its activity and increase 
ROS production in PD brain [76]. Furthermore, PD is 
modeled in cell culture and animals by administering toxins 
such as rotenone and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) that impair mitochondrial ETC 
complex I activity and increase ROS production [77, 78].  

5.2. NADPH Oxidase and Microglia-Mediated Oxidative 
Stress 

 More recently, studies in vitro and in vivo have 
highlighted a role for O2-� produced by microglial NADPH 
oxidase in promoting dopaminergic neuron damage in PD 
[79, 80]. In addition to direct damage, O2-� produced by 
NADPH oxidase can combine with nitric oxide produced by 
inducible nitric oxide synthase (NOS) to generate the 
damaging free radical peroxynitrite and lead to characteristic 
nitration and nitrosylation of proteins seen in PD brain [81, 
82]. Levels of NADPH oxidase are increased in the 
substantia nigra of post-mortem PD brain and in animal 
models of toxin-induced PD [79]. Upregulation of NADPH 
oxidase coincides with increased markers of oxidative stress 
and is thought to promote neuroinflammation [79]. More 
direct evidence that microglial NADPH oxidase plays a 
causal role in the development of PD comes from findings 
that MPTP injection into murine brain results in oxidative 
damage via enhanced microglial NADPH oxidase activation 
[83]. This oxidative damage is secondary to direct neuronal 
damage caused by MPTP, suggesting cross-talk between 
neuronal mitochondrial dysfunction and microglial NADPH 
oxidase activation [83]. Interestingly, in experimentally-
induced PD models, NADPH oxidase-null mice show 
reduced secondary neuronal damage and have lower 
parkinsonism-like symptoms [79, 80]. This strongly supports 
a pathogenic role for extracellular free radicals produced by 
microglial NADPH oxidase in the progression of PD. 
Furthermore, inhibitors of NADPH oxidase reduce neuronal 
damage induced by rotenone in neuron-glial co-cultures and 
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primary microglial cultures from NADPH oxidase-deficient 
mice show reduced neurotoxicity when co-cultured with 
rotenone-treated neurons [80]. These findings highlight a 
potential role for anti-oxidants, including certain 
cannabinoids, in the prevention and treatment of PD.  

5.3. Cannabinoids as Therapeutic Anti-Oxidants in PD 

 Cannabinoids contain phenolic ring moieties [28] and 
have been shown to exhibit anti-oxidant activity and protect 
against glutamate-induced neurotoxicity in vitro [27]. More 
recent studies in rodents indicate that by reducing oxidative 
stress exogenous cannabinoid treatment may protect against 
neuronal damage in diabetic neuropathy [84] and cognitive 
impairment induced by experimental sepsis [85]. Infusion of 
H3-labelled �9-THC in dogs demonstrates accumulation of 
cannabinoids within brain mitochondria [86]. Cannabinoids 
have also been shown to influence activities of various 
mitochondrial enzymes in vitro [87-89]. A recent study 
directly assessed the influence of synthetic cannabinoids on 
mitochondrial ROS-induced damage caused by paraquat 
treatment and found protective effects [90]. Taken together, 
these findings support the hypothesis that exogenous 
cannabinoids with anti-oxidant properties may be able to 
influence mitochondrial ROS production in PD brain. 
Presumably cannabinoids could also exhibit anti-oxidant 
properties in the extracellular space to reduce microglial 
NADPH oxidase-induced neuronal damage, but this has not 
been directly assessed yet. A recent study in rodents with 
cisplatin-induced nephropathy demonstrated that the anti-
oxidant cannabidiol blunted the increase in NADPH oxidase 
expression and lessened markers of oxidative stress, 
inflammation, and cell death in kidneys [91]. Whether 
cannabidiol might act similarly to reduce NADPH oxidase 
expression and limit oxidative damage within PD brain has 
yet to be tested.  

 There is evidence to support that cannabinoids may 
protect against PD pathology in rodent models due to their 
anti-oxidant properties. Using the 6-OHDA model in rats, 
synthetic cannabinoids with anti-oxidant properties were 
shown to protect against biochemical features of 
experimentally-induced PD [19, 50]. Cannabidiol and 
AM404, which demonstrate anti-oxidant activity in vitro and 
have little to no affinity for CB receptors [20], demonstrated 
neuroprotective effects. Although the direct effects of 
cannabinoids on markers of oxidative stress were not 
assessed, cannabinoid treatment did prevent a decline in 
mRNA levels of the endogenous cytosolic anti-oxidant 
copper-zinc superoxide dismutase following 6-OHDA 
injection [19]. Further direct support of a reduction in 
neuronal or brain oxidative stress and/or an increase in in
vivo anti-oxidant capacity with cannabinoid therapy is 
therefore needed, but cannabinoids as anti-oxidants do show 
promise in the treatment of PD at least in cell culture and 
animal models.  

6. POTENTIAL NEGATIVE EFFECTS OF CANNA-
BINOIDS IN PD: INFLUENCE ON MITOCHONDRIA 

 There is substantial evidence that mitochondrial 
dysfunction is present in the brain of patients with PD [75]. 
There is also evidence suggesting that cannabinoids may 

have a negative influence on brain mitochondrial function, 
calling into question possible use of cannabinoids as 
therapies for PD. �9-THC treatment of rats promotes 
uncoupling of brain mitochondria [89] and �9-THC also 
impairs complex I activity in vitro, particularly in 
mitochondria isolated from the cerebral cortex [87]. In 
addition to possible direct insult to mitochondrial enzymes, 
cannabinoids may impair mitochondrial biogenesis; a 
process recently shown to be downregulated in PD brain 
[92].  

 Mitochondrial biogenesis is a complex process involving 
the incorporation of new proteins into existing organelles. 
This requires the coordinated expression of genes encoded 
by both the nuclear and mitochondrial genome, which are 
regulated by several transcription factors and co-activators 
(reviewed in [93]). Chief among these regulatory proteins is 
the transcriptional co-activator peroxisome proliferator-
activated receptor � co-activator-1 (PGC-1), which is 
regarded as a master regulator of mitochondrial biogenesis in 
various cell types [93, 94, 95].  

 Mitochondrial biogenesis is becoming more appreciated 
as a potential therapeutic target in PD for two main reasons. 
First, increased mitochondrial biogenesis would incorporate 
new mitochondrial proteins - devoid of oxidative damage - 
into existing organelles. This would act to replace or reduce 
the burden of dysfunctional mitochondria caused by 
oxidatively damaged mitochondrial enzymes present in PD 
brain [75]. Second, there is accumulating evidence that PD is 
associated with impaired mitochondrial biogenesis in brain 
[92]. Specifically, reduced expression of PGC-1 and its 
downstream targets are hypothesized to play a causal role in 
PD pathology [91]. A recent study examining a large set of 
post-mortem PD brain tissues using laser-capture micro-
dissection of dopaminergic neurons coupled with gene-set 
enrichment analyses identified genes controlled by PGC-1 as 
being co-ordinately down-regulated in PD brain compared to 
healthy controls [92]. Interestingly, CB1 receptor activation 
inhibits [16] and antagonism promotes [96] mitochondrial 
biogenesis across a wide variety of cell types. This appears 
to occur through reduced expression of PGC-1 acting 
through impairment of endothelial NOS [16], which is 
important for maintenance of basal mitochondrial content. 
Thus, if similar processes occurred in neurons, cannabinoids 
acting through the CB1 receptor could exacerbate PD by 
reducing PGC-1 expression and mitochondrial biogenesis 
within the brain. Along with the direct effects of certain 
cannabinoids on brain mitochondrial function [89], these 
findings suggest that there is potential for cannabinoids to 
have a negative influence on mitochondrial bioenergetics. 
This should be considered if cannabinoids are to be utilized 
in the treatment of PD in terms of oxidative stress and 
mitochondrial function.  

 The effects of cannabinoids on mitochondrial biogenesis 
and function in neurons and other brain cells appear to be an 
area that requires further study. The negative effects of 
cannabinoids on PGC-1 expression and mitochondrial 
biogenesis are likely due to their interaction with CB1 
receptors [16]; recent findings also indicate that activation of 
CB1 receptors increases oxidative stress in various cell types 
[97, 98]. Therefore, the best strategy for the treatment of PD 
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appears to be either selective targeting of CB2 receptors [99] 
or use of cannabinoids with anti-oxidant properties, which 
do not interact with the CB1 receptor [19, 50].  

7. SUMMARY AND CONCLUSIONS 

 There is a significant body of evidence supporting the 
potential therapeutic use of cannabinoids in 
neurodegenerative diseases. The therapeutic effects may 
result from the anti�oxidant properties of some cannabinoids 
and/or the immunomodulatory influence of those 

cannabinoids that are CB2 receptor agonists (Fig. 1A). 
However, as noted above, cannabinoids may also trigger 
signaling cascades leading to neurotoxicity, impaired 
mitochondrial enzyme activity, reduced mitochondrial 
biogenesis, and increased oxidative stress (Fig. 1B)�
Consequently� it is not surprising that cannabinoids have 
been reported to cause toxic effects in a number of animal 
models [12, 100-102]. There is also significant clinical 
evidence of detrimental effects of chronic cannabis use in 
humans [101, 103]. These adverse effects may be mediated 
by the CB1 receptors, but could also involve other receptor 

Fig. (1). A) Potential neuroprotective effects of cannabinoids in PD. Cannabinoids acting as anti-oxidants or through CB2 receptors may 
reduce microglia-mediated inflammatory damage to dopaminergic neurons. Reducing body temperature may represent an additional anti-
inflammatory effect of cannabinoids, which may act through CB1 receptors or unknown pathways in thermoregulatory centre of the 
hypothalamus. B) Possible mitotoxic effects of cannabinoids in PD. Direct cytotoxicity, reduced mitochondrial biogenesis, or inhibition of 
mitochondrial enzymes may contribute to elevated oxidative damage and increased PD pathology. See text for additional details and 
citations. PD, Parkinson’s disease. 
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types, including vanilloid receptor 1 (VR1) also known as 
the transient receptor potential cation channel subfamily V 
member 1 (TrpV1) [104].  

 It is apparent that the effects of drugs affecting 
cannabinoid signaling depend on the cell types, animal 
models and other experimental conditions used. Therefore, 
further studies of the pharmacological mechanisms of 
cannabinoids are needed to allow rational design of 
neuroprotective drugs lacking detrimental effects in vivo�

Nevertheless, initial mechanistic studies on the potential 
therapeutic role of cannabinoids in PD and other 
neurodegenerative disorders are promising and propose an 
area of exciting discovery.  
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ABBREVIATIONS 

6-OHDA = 6-hydroxydopamine 

CB1 = cannabinoid receptor type 1 

CB2 = cannabinoid receptor type 2 

ETC = electron transport chain 

IL = interleukin  

MPTP = 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

PD = Parkinson’s disease 

PGC-1 = peroxisome proliferator-activated receptor �
co-activator-1 

ROS = reactive oxygen species 

O2-� = superoxide anion 

Tfam = mitochondrial transcription factor A 

THC = tetrahydrocannabinol 

TNF = tumor necrosis factor 
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